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Abstract Adoption of the 10 GbE Ethernet standard as a high performance inter-
connect has been impeded by two important performance-oriented considerations: (1)
processing requirements of common protocol stacks and (2) end-to-end latency. The
overheads of typical software based protocol stacks on CPU utilization and throughput
have been well evaluated in several recent studies. We focus on end-to-end latency
and present a detailed characterization across typical server system hardware and
software stack components. We demonstrate that application level end-to-end one-
way latency with a 10 GbE connection can be as low as 10 µs for a single isolated
request in a standard Linux network stack. The paper analyzes the components of the
latency and discusses possible significant variations to the components under realistic
conditions. We found that methods that optimize for throughput can significantly com-
promise Ethernet based latencies. Methods to pursue reducing the minimum latency
and controlling the variations are presented.
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1 Introduction

The introduction of 10 Gb Ethernet as an IEEE 802.3 standard has led to a re-evaluation
of data center infrastructures with particular attention to server systems architecture.
The capability of typical server systems in efficiently terminating TCP/IP streams has
been intensively researched leading to several types of solutions in the industry. Sev-
eral methods of network acceleration ranging from state-full offloads (TOEs [1,2]) to
stateless offloads with platform assists (I/OAT [3,4]) focusing exclusively on CPU uti-
lization and network throughput have been proposed. Very limited advancements have
been proposed to comprehensively address the latency between systems in a data center
under Ethernet-based networking. We also observe that throughput-oriented innova-
tions may have skewed the perception of latency in Ethernet based networking [4].

The focus of this paper is the ‘end-to-end’ latency between applications running on
two different systems. In Sect. 2, we present general motivation for addressing end-
to-end latency and review previous attempts to quantify network latency. We note that
certain classes of high-performance computing (HPC) applications seek latencies of
just a few microseconds and have motivated innovations such as MPI, Myrinet and
Infiniband. These innovations have tended to address Ethernet limitations but only by
completely bypassing typical TCP/IP Ethernet systems architecture. The ubiquitous
nature of existing TCP/IP stacks over the last three decades drives a need to explore
the latency breakdown and what can be done to mitigate not just the minimum, but
also reduce the variations seen in traditional TCP/IP Ethernet. Not just the current sce-
nario is sensitive to latency, but emerging technologies such as NVRAM based storage
subsystems or storage caches will also to motivate aggressive latency reductions for
a broader class of applications.

Our study is divided into two main areas: we first present a detailed characterization
under ideal circumstances, and then evaluate practical aspects that dilate latency. After
explaining the motivation in Sects. 3 and 4 contains a description of our experimental
setup and methodology. For our studies, we instrumented the source code of a Linux
stack running with nanosecond resolution timers on the latest Intel� Xeon� processor
systems. Section 5 quantifies latency components associated with the application inter-
face to system software, the network stack and hardware latencies between CPU cores,
memory and I/O subsystems. We observe that Ethernet based latency with 1 GbE can
be as low as 12 µs. Section 6 reviews differences found between 1 Gbps latency and
10 Gbps latency, and Sect. 7 highlights the impact of cache size to networking latency.
Latency data can be very sensitive to the workload, software stack and system hardware
assumptions. In Sect. 8, we identify the primary sources of variation that significantly
effect overall average latency. In a heterogeneous application environment, a system
may be exposed to throughput oriented connections and latency sensitive connections.
In current 1 and 10 GbE adapters with no specific expectations on latency, techniques
to reduce the rate of interrupts may significantly bloat overall latency. Three other
issues discussed in this paper are head-of-queue effects, contention for various system
resources, and core affinity. Each of the significant factors that influence latency is
addressed comprehensively in Sect. 9. We envision a set of techniques that collectively
can achieve deterministic 10 µs latencies for Ethernet based networked systems and
under a wide range of circumstances.
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2 Background (Motivation & Prior Work)

We are primarily focused on data center environments where latency differences of few
microseconds can have a significant impact on application performance. Transconti-
nental distances of the wild Internet involve speed of light dependency and multiple
complex packet hops where latencies can easily get above many orders of magnitude
beyond a data center. A packet traveling 4,800 km (3,000 miles) accounting only for
wire delay would take 27 ms, while a packet in a data center traveling 50 m would take
278 ns to propagate. Within a datacenter the system-to-system latency has the wire
speed as a small fraction of the overall latency.

Latency is orthogonal in definition to throughput. Increasing throughput means
increasing the number of messages launched, processed or received. Network and
system capacity can be increased, but latency itself may or may not be affected by
changes in throughput. The importance of latency relative to throughput is very appli-
cation specific. In a latency sensitive application, a compute resource being used by
the application is stalled while waiting for an access to data to return from a network
location. If an application thread (a hardware context) stalls after making a request for
data and no other thread is available to be scheduled or can be scheduled to hide the
latency, the application is latency dependent. If the latency can be hidden by sched-
uling other threads in place of the stalled thread, the application can become more
throughput oriented.

Many applications may be designed to spawn as many threads as possible to hide
latency if the end-user response time is not the primary metric. Several popular through-
put-oriented benchmarks such as SPECjAppServer and TPC-C (non-clustered) exhibit
such behavior. In these benchmarks, the response time need only be within reasonable
limits. High network latencies and high queuing latencies within the system can be
tolerated much more in such scenarios. It is critical to note that the scheduling of many
threads to hide latency compromises platform efficiency even if response time targets
can be met. Scheduling overheads including context switches, thread migration, and
contention for shared resources such as caches can be reduced if latency can be reduced
and a lower number of threads are active at any given time.

There are several types of applications that have been known to exhibit a greater
latency sensitivity compared to bandwidth sensitivity. In particular, we are focused
on scenarios where microsecond level difference in latency has an application level
significance. Three usage models of interest are recognized as follows:

(1) Synchronization latency: This is the latency associated with synchronization
messages between multiple threads of an application that has been parallelized
to run on different physical compute nodes. Example: Parallel computing.

(2) Distributed memory access latency: In a distributed memory application, threads
running on one compute node access the memory of another compute node in a
cluster. i.e., HPC, database clusters, and business performance clusters (BPC).

(3) Storage media access latency: Traditionally, latency to access magnetic tapes or
rotational media like disk drives has been several milliseconds. However, with
the advent of solid-state devices and the usage of DRAM based caches that front-
end magnetic media, latencies can be expected to drop down to microseconds.
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Past studies have compared various interconnects and software interfaces with a
focus on latency. In an NCSA study [5], a simple ping-pong test was conducted com-
paring TCP/IP messages with Myrinet and Infiniband. For a small message of 64 B,
latency with Infiniband was measured at 5.3 µs and Myrinet at 8.3 µs compared to
60 µs on Ethernet with TCP/IP. Latencies on Infiniband were measured to be consis-
tently ten times lower than Ethernet with TCP/IP until the message size increases to a
point where the bandwidth available begins to impact latency.

A significant portion of the latency for TCP/IP comes from the software interface.
In this protocol, the two ends that are communicating are not only assumed to be
completely asynchronous but are even unaware of each other. When a message arrives
at a compute node, a processor must be interrupted and software must discover the
application that must process the new message via protocol stacks. Once the discovery
takes place, the application must be context switched and the data is copied into the
applications buffer before the message can be processed. In addition to this funda-
mental overhead, several significant sources of variation may occur. For example, a
NIC may use interrupt moderation to amortize the processing overhead of interrupts
across a batch of packets. Such techniques could artificially add latency irrespective
of the latency sensitivity of a particular packet within a batch.

In the HPC environment, often the solution is to use an interconnect based on
Infiniband or Myrinet. Of the top 500 supercomputers, about 30% use Infiniband or
Myrinet interconnects [6]. Latencies between two systems to transmit and receive a
message are being claimed to be as low as 1.29 µs [7] with Qlogic InfiniPath HTX host
channel adapters. TOE (TCP Offload Engine) implementations have made significant
latency improvements in reducing ping-pong latency down to 8.6 µs [8], however the
additional expense and required overhead for connection support, it is unclear if TOE
will become mainstream. Traditional host-processed TCP/IP measurements 10.5 µs
[8] have also been shown at 10 Gbps and we will describe the typical breakdown in
the next sections. Even with the advent of Ethernet cut-through switches that result
in Ethernet switch latencies of 300 ns compared to 200 ns Infiniband switch latencies,
latency aware HPC customers are cautious to switch to Ethernet. To summarize, it is
generally perceived that TCP/IP Ethernet is about an order of magnitude away from
low latency networks such as Infiniband and Myrinet.

3 Problem Statement

It may be obvious why TCP/IP has a much higher latency than Infiniband and Myr-
inet and other hardware based protocols to efficiently pass point-to-point messages
between applications. Key to the differences is that, in the case of Infiniband and Myri-
net, the hardware supports the packetization, segmentation, reassembly and movement
of payload data into user space. This is directly accessible by the user space application
without a transition from kernel space to user space with memory copies or complex
pointer redirections.

On the other hand, TCP/IP has shown remarkable flexibility in its 30 year history.
Although certain aspects remain constant (MTU, stack layer structure with TCB and
memory descriptors, and a focus of core processing of the stack) several enhancements

123



Int J Parallel Prog

have streamlined the efficiency of using the incumbent networking protocol. These
include interrupt moderation schemes, receive side scaling (RSS) to map to multi-
ple cores efficiently, transmit side offloading (TSO), and TCP/IP offloading schemes.
Additionally, different protocols such as RDMA have been shown to work and are
being widely adopted within the Ethernet hardware. RDMA in particular targets
latency by placing messages directly in application buffers.

As a result, with the growing importance of low latency in applications, what con-
tributes to the latency becomes important. The overall goal would be to improve
standard implementations of TCP/IP if possible and if not reasonable, propose proper
alternatives based on the importance of latency to an application. The first question is:

What is the breakdown of minimal latency components to pass a message from one
system’s application to another system’s application?

To answer this we break down the sequence of operations between an application
preparing a message and sending it out the wire. Over a short wire, we observe the
receiving of the message and follow the processes needed to pass the message to the
receiving application. Once the minimal latency is understood between two systems
in a simple connection, we can look at variations upon the message latency. In other
words, what is the variation and scope beyond the minimum latency in the previous
question?

By looking at how typical TCP/IP transactions encounter events that prolong
latency, we can understand what can be done to improve TCP/IP latency. A simi-
lar question is related with the minimum latency comparing the prevalent 1 GbE and
emerging 10 GbE. What is the difference and are the components dominated by soft-
ware or other elements compared to the increased wire speed?

4 Experimental Setup

Figure 1 below shows the logical experimental configuration which is a basic back-
to-back fiber optic connection between two Intel� Xeon� processor (2.13 GHz)
� 5138 based platforms. To avoid core affinity mapping concerns, only a single core
was enabled within each dual-core processor. The NIC installed initially was an Intel
82571 1 GbE based card using a PCI Express� (PCIe) x4 link [9] to the Intel� 5000P
chipset. [10] Tests are then repeated with an Intel� 82598 10 GbE card using a PCIe
x8 link to the Intel� 5000P chipset for 10 GbE comparison.

On the software configuration, the two systems are executing Linux 2.6.18 RC3
kernels. NAPI [11] has been turned off so there is no interrupt moderation in the simple
message tests being run. NetPIPE 3.6.2 was used to send a simple TCP/IP ping-pong
message between the two systems. A complete test therefore constitutes 3 packets on
the link layer:

1. Ping to server
2. Pong response to client (with ACK of ping)
3. ACK to server for pong.

It should be noted that the stacks on each system sees three transactions. The cli-
ent processes a ping transaction and receives ACK and pong transactions. The server
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Fig. 1 NetPIPE interfaces

Fig. 2 NetPIPE time sequence

receives a ping and ACK and sends a pong (with ACK). Figure 2 illustrates this with
how the client system reacts to the ping-pong test.

The NetPIPE application is configured to run a single byte of information from
the client to the server and pong back. This results in a minimum data payload size
along with the 66 bytes for TCP(20 bytes) header IP(20 bytes) header, MAC(14 bytes)
addresses and length field, start frame delimiter (1 byte), frame check sequence
(4 bytes), and preamble (7 bytes) and a 12 bytes inter-frame gap requirement.

With the application in a running configuration, a breakdown of application, stack
components and driver latencies can be derived by adding kernel probes into the
source code of the application and kernel. These probes enable and disable perfor-
mance monitoring event registers such as CPU_CLK_UNHALTED [12] counting the
processor core clock cycles. For a simple application where a single packet is being
sent and a single packet is being received, there is enough control to deterministically
enable/disable the counter.

Below is an example code of counting cycles during the TCP sending copy opera-
tion. Between the Start and End of instrumentation is the normal Linux kernel trans-
action.

Start_Instrumentation(skb, \ ACROSS_TCP_SENDMSG_COPY);
err = skb_copy_to_page(sk, from, \ skb, page, off, copy);
End_Instrumentation(1, \ ACROSS_TCP_SENDMSG_COPY);
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There is instrumentation latency added with this approach. When the sampling is
done, before sampling real data, an empty Start/End sequence is made to calculate
the number of core cycles used to Start and Stop the instrumentation. This time is
subtracted from any data such as the example above.

There is a certain amount of variation in the cycle count. The exact core clock cycle
when the counter is enabled and disabled depends on the state of the processor when
the event counter is called. Even in a controlled environment as a single ping-pong
test, up to 30% variation can be seen in processor clock cycles. As a result, averaging
each sample over 10,000 ping-pong tests was captured and of these at least seven
were visually inspected for isolating extreme cases such as system warm up or other
potential configuration perturbance. The average of these averages was then used for
each latency component discussed in Sect. 6. Although we are concerned with the
minimum latency of each component, we cannot simply take the minimum, since
a minimum in one component (i.e., TCP) will result in a non-minimum of another
component (i.e., IP).

Although the variation in the core clock counter prevents an absolute minimum
latency value to be measured, some checks can be done. One was to re-run the same
test on another pair of client-servers. Accounting the difference between a 2.13 GHz
core and 2.66 GHz core, certain latency components were checked with very simi-
lar clock counts in this different environment. Additionally the L2 miss performance
register was tested, and all cases the last level cache misses of the Xeon processor
matched in every ping-pong test executed.

In the measurements made, only a single client system was used to break down the
latency components. The time needed to send a packet is based on the client sending
the ping. The time needed to receive a packet is based on the client receiving the pong
packet.

There are hardware based latencies that cannot be instrumented with software noted
in Tables 1 and 2. These are based on estimated latencies based on previous hardware
measurements and known specifications.

Table 1 Transmit 1 Gbps latency breakdown

Description of transmit packet activities Source Time (ns)

Application sends a message to the socket interface Measurement 950

Copy from user space to socket buffer Measurement 409

TCP prepares a datagram to IP layer Measurement 260

IP layer calls network device driver Measurement 550

Netdev calls precise hardware implementation Measurement 430

Basedriver execution and hand control to NIC Measurement 400

Core IO write propagation delay to wake up NIC Estimation 180

NIC to process core write and fetch descriptor of packet
to transmit

Estimation 580

NIC, based on descriptor, fetches packet header/payload
and sends packet to PHY

Estimation 400

Total transmit packet time 4,159
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Table 2 Receive 1 Gbps latency breakdown

Description of receive packet activities Source Time (ns)

MAC filter determines target packet is for this machine Estimation 200

NIC starts DMA packet header and payload into
memory

Estimation 400

NIC interrupts core with MSI-X packet to APIC Estimation 500

Hardware MSI-X interrupt service routine to parse what
caused interrupt

Estimation 270

Interrupt cause register read requirement Measurement 1,000

ISR packet processing of descriptor to update receive
queue

Measurement 300

SoftIRQ (deferred procedure call in Windows) Measurement 1,287

TCP and IP receive side processing Measurement 570

Wakeup application to process socket information Measurement 1,274

Kernel to application space data copy Measurement 208

ACK the pong received by the remote sender Measurement 1,117

Application receive message overhead to register
completion

Measurement 621

Total receive packet time 7,747

5 Detailed Latency Breakdown

The NetPIPE application responds with a measurement of time to complete the ping-
pong round trip time. This time is divided by two to represent the time required to
send a packet and receive the packet. For the Intel� 82571-based 1 Gbps back-to-back
configuration described above, NetPIPE reports 14 µs. This is based on the round trip
ping-pong transaction of 28 µs. The next section will do a detailed breakdown of
components leading to this 14 µs.

First let us take the latency breakdown from the transmission of a packet through
the physical interface and ending with the receive latencies. To begin with the latency
component breakdown, the NetPIPE application needs to prepare a transmit request
for the ping operation. This takes 950 ns to send a message to the socket interface
(on a connection that has already been established) with the sock_write() function.
This then calls the tcp_sendmsg()to write to the socket buffer. Tcp_write_xmit is then
called to begin the TCP transmission.

Once the TCP layer begins, the application buffer is copied into kernel space and
pushed into the transmit queue. At this point, after 220 ns, the ip_queue_xmit() can be
called to initiate the IP layer.

The IP layer takes 450 ns to do various tasks such as routing, segmentation, and IP
header processing before calling the network device driver with dev_queue_xmit().
The network driver consumes 430 ns to construct the output packet queue entry and
calling e1000_xmit_frame(). The e1000 1 Gbps NIC driver sets up a DMA transfer
with the 82571 NIC by indicating a packet is pending transmission. This is done by
writing to a NIC control register, taking 400 ns to complete. The value written to the
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NIC is a pointer into a ring of descriptors in main memory which the NIC can fetch
the packet descriptor of the packet to transmit.

A time of about 180 ns is needed to propagate the tail pointer register write from
the core to the NIC. The NIC, once it knows a packet is needed to transmit, fetches
a descriptor from the memory (via DMA) that defines where the packet header and
payload reside in memory. Since the 82571 is running at a slower speed of about
135 MHz, it takes about 180 ns to interpret the descriptor. A second DMA read by the
NIC is generated to fetch the actual packet data. Each 64-byte cache line access to
memory takes an estimated 400 ns to propagate from the PCIe signals pins to mem-
ory and back. As a result, the hardware latency is 1,160 ns for the NIC to launch the
packet onto the fiber interface. The summation of the 3,750 ns packet transmit process
is shown in Table 1.

The physical adapter (PHY) basically translates to optical waves and tunes the
signal to pre-emphasize or de-emphasize the signal using DSP algorithms. This is
needed to counteract the number of “zeros” or “ones” in a serial pattern that may skew
the receiving end incorrectly. The latency specifications on 1 GHz PHYs are usually
<10 ns. The short fiber connection between the two machines of 3 m has a latency of
light of an estimated 10 ns. Since the fiber speed is 1 Gbps, an additional 672 ns are
needed to propagate the 64-byte minimum packet size and 20 bytes of inter-frame gap
and preamble. The total wire time including the PHYs is estimated at 702 ns.

For the receiving process, in this case the receiving of a pong packet from the
server, is similar to the reverse of transmit. The NIC, upon filtering a packet as its own
packet, will start writing into main memory based on the contents of a pre-fetched
packet descriptor. This filtering takes 200 ns at the 135 MHz NIC speed at which point
the NIC will start the DMA write into main memory. Immediately after launching the
DMA, the NIC will interrupt the processor that pending receive data is ready. Based on
the ordering rules of the PCIe specification [9] the interrupt will not be serviced before
the write is finished into main memory to maintain data coherence. This combined
DMA and interrupt latency is calculated as 900 ns based on the Intel� 5000P chipset
specification, resulting in a total 1,100 ns before core software is engaged.

The interrupt handler takes about 270 ns to switch out the current context and start
to determine the source of the interrupt. Most current systems follow a complex pro-
cess of reading potential interrupt cause registers (ICR) to determine exactly what
generated the interrupt. In the 82571 configuration this takes 1,000 ns for the read to
propagate to the PCIe device and respond to the core. With emerging NICs (that use
MSI-X messages) to vector the core directly to the interrupt source instructions to
service the interrupt this can soon be counted as zero time. The core, once it enters
the e1000_intr() routine takes 300 ns to process the descriptor pointers in the ring
and start calling the netif_rx() SoftIRQ. The SoftIRQ is analogous to the Windows
deferred procedure calls (DPC) implementation of drivers and takes 1,287 ns. Part of
this time is needed for the kernel to schedule the call.

After updating the input packet queue, the ip_rcv() is called starting the TCP/IP
receive process. Both TCP and IP layers take 570 ns. The application then needs to be
scheduled taking 1,274 ns. This is the normal configuration where the application is
blocked, basically sleeping and not actively polling the socket on data availability. In
the NetPIPE application, once the application is woken up, this triggers the 208 ns copy
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operation from kernel space to memory space. Since the packet is a single cache line,
this time falls within the 80 ns fully buffered DIMM (FBD) latency to read and then
write the data. At this time the acknowledge (ACK) to the pong packet is generated to
provide a complete network connection taking 1,117 ns. Finally the application needs
to register that the ping-pong test is complete taking 621 ns. The complete receive
sequence is seen below in Table 2 for a total of 7,747 ns.

The two systems configured with no switch and a cross-over fiber are estimated
to take 1,300 ns to exit the TX PHY, the wire speed of the packet and the TX PHY.
Combining transmit, wire and receive breakdown latencies, a total of instrumented,
analytical and specification based time is 12.2 µs compared to the 14 µs reported by
the NetPIPE application. This 13% variation is from the inaccuracies in adding up
measurements of discrete events in the application, socket interface, stack, driver and
estimations of hardware latencies to the cumulative report by NetPIPE.

6 Variations Seen at 10 GbE

With 10 Gbps NICs becoming more prevalent, a back-to-back configuration with Intel
82598 NIC PCIe x8 cards and 2.66 GHz Xeon 5160 cores was studied in the same
Linux OS compared to the 2.13 GHz cores in the 1 Gbps case above. Again, turning
NAPI off, and using a single core configuration, the one-way latency reported by
NetPIPE for a TCP single byte message was repeatedly 10.2 µs.

An obvious part of this latency reduction is the increased wire speed from 1 to
10 Gbps. This reduces the flight time of a 66 bytes header and a 1 byte payload ana-
lytically from 536 ns down to 54 ns. This is a latency savings of 482 ns. Since the
1 Gbps measurements were done at a slower core speed, all core related activity such
as application, sockets, stack and driver functions have a respective speedup. In this
case the speedup is 1–2.13/2.66 GHz, or 20%. Ignoring memory accesses this would
reduce the 9,150 of to 7,320 ns or a reduced latency of 1,830 ns. As described above,
the 1,000 ns required to determine the source of the interrupt cause, is removed in the
Intel 82598 with the use of MSI-X message signaled interrupts that encode the source
interrupt in the message. Other test configuration variations are minor kernel changes
between the 2.6.18 Linux kernel release used for 1 Gbps tests and the 2.6.21.5 kernel
for 10 Gb tests. Additionally, the pre-release 82598 10 Gb NIC driver was less proven
compared to the industry tested 82571 1 Gb NIC.

The analytical projections above, of saving 3,310 ns reduces the 14 µs NetPipe
1 Gbps report to 10.7 µs for the 10 Gbps test. This is a 2% variation in the actual
10 Gbps NetPIPE test report. The breakdown of the latency into application, socket,
stack, driver and wire functions reflect basically the conclusions above.

7 Impact of Cache Size on Latency

Since cache misses to main memory directly impact latency a comparison between a
4 MB L2 and a larger 6 MB L2 can be made. As seen in Fig. 3 there is significant miss
reduction in the larger cache in various stack and driver functions in the transmit and
receive path. In this measurement case, default hadware prefetchers were enabled, so
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Average L2 misses - 6MB vs 4MB L2 cache
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Fig. 3 L2 cache size impact to network latency

some of the misses can be expected to be un-used prefetches. Even assuming a single
L2 miss in each of the nine functions, this would constitute a 450–900 ns latency hit
assuming a 50–100 ns memory latency. This is also only a portion of the overall latency
since it does not include the hardware link level and interrupt processing but serves to
point out the sensitivity of network latency to the L2 cache.

Figure 3 also shows over a selection of stack functions that the L2 misses reduce by
an average of 28%. This is almost linear to the 33% increase in L2 cache space from 4
to 6 MB. As memory accesses continue to have latency on the order of 50–100 ns, and
on-die cache access time about 10 ns, there is increasing importance to reduce cache
misses for reduced latency.

8 Sources of Variation on Minimum Latency

Variations on minimum latency discussed above are factors that add latency to mes-
sages between two systems, often by a 10×multiplication of time in a 10 Gbps network.
This is also termed message jitter or skew. This section will explore four major causes
for variation which adds significantly to average TCP/IP latencies.

Interrupt moderation is a method to reduce the number of processor context switches
due to interrupts. Consider a 10 Gbps NIC that in the process of bidirectional 64-byte
packets would need to interrupt each 26 ns. Instead of interrupting on each packet,
packets can be grouped together for more efficient processing. While this process
reduces the number of interrupts the core needs to deal with, the cost is that latency
critical packets are delayed. By default Windows specifies a 250 µs window of
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interrupt moderation to accumulate packet tasks and Linux has a 125 µs window.
These figures dwarf the 14 µs minimum latency mentioned above.

As displayed in figure ten different timers are engaged as packets arrive. The packet
timer may expire on an individual packet to trigger the interrupt for OS level servicing,
but throttling can occur with an absolute timer that allows the receive packets to batch
for greater processing efficiency.

Increasing the absolute timer impacts latency as shown in Fig. 4. Setting the inter-
rupt throttle rater (ITR) to extremely long values, such as 125 maximum interrupts per
second, results in an average system-to-system latency of 4 ms. As the interrupt rate
is increased the latency decreases to the expected minimum values. As the message
size increases within a single 1,514 B MTU size the latency is dominated by the ITR
when IRT < 32000. At higher ITR, the system level impact of processing the larger
messages impacts latency to some degree (Fig. 5).

Fig. 4 NIC interrupt timers

Fig. 5 Impact of ITR on latency
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When the number of bytes sent requires two MTU packets, there is a sharp latency
increase as two packets require processing instead of one, but this effect is dampened
out by the time a triple packet message is required. Latency gradually increases as the
message byte count increases in a linear manner.

The head-of-queue effect is also a problem. As discussed with the ring buffer, to
transmit and receive a packet, the OS sees a serial sequence of packets to service.
These packets are serviced in order received or order of pending transmits. As a result,
a latency-critical message can be blocked by other protocol requests. In a similar
manner this head-of-queue effect is seen in the large buffers of today’s NICs. The
buffers are needed to support the bursty traffic patterns of today’s network, and it is
not uncommon to see a 320 KB transmit buffer on a 10 Gbps NIC. On such a NIC,
if the buffer is full and a latency sensitive packet L is attempting to be sent, it would
take the PHY 20 µs to drain the buffer at a 10 Gbps rate before packet L is presented
on the wire.

System bandwidth contention is another issue. Although there can be contention
on the processor interface and memory interface, the most visible conflicts are seen
on the slower PCIe interfaces. In the case of the 10 Gbps NIC above, 28 outstand-
ing PCIe transactions are supported. Each NIC based PCIe transaction on a PCIe x8
configuration can take up to 138 ns for large packets. As a result the PCIe interface
can block for up to 4 µs. This is one of the more extreme bandwidth contentions, but
a cumulation of contentions on the various physical interfaces can be considered to
occur frequently.

A fourth area to consider is application core affinity. If an incoming packet is being
processed on a core, and is not the core running the application, context switch latency
is seen for the packet processing core to hand over to the application core. In Linux this
is observed to add 2 µs and Windows 8 µs typically to the complete system-to-system
latency [13].

There are remotely possible conditions that will affect latency as well. Overall pro-
cessor load will also play a role, but to some extent will fall into the figures listed
above. There could be a page fault to disk or a complex OS context switch, but this
is considered extremely rare in a modern datacenter. An additional rare occurrence
would be a link layer contention or packet retransmission.

In summary, the four estimations mentioned above can add 282 µs to minimum
12 µs message latency. It can be stated that less than 5% of potentially expected
latency that can be contributed to the deterministic requirements of the application,
stack, driver, hardware and wire in a datacenter.

9 Methods to Reduce Variation

The primary task in reducing latency in a TCP/IP environment is to first tag latency
critical messages. Once they are tagged, there must be a method to detect and classify
them both in transmit and receive path. Once latency critical messages are detected,
there is need to prioritize over other messages. These methods cannot be done in iso-
lation, but the latency reduction methods need to be propagated to the entire network
and systems on the network.
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To help address interrupt moderation, New Application Programming Interface
(NAPI) is in current use of Linux 2.5/2.6 kernels [11,14]. This attempts to intelli-
gently monitor the receiving packet flow, and in a low packet per second scenario
allows interrupts on a frequent basis. As packets per second increase and the system
cannot respond to interrupts efficiently, polling by the kernel of the receive descriptor
ring is started. This assumes high packet rates will continue, and if packet rates drop
to a more intermittent rate, interrupt based signaling of receive packets can resume
and active polling by the kernel driver is stopped.

The Intel� e1000 driver supports a form of adaptive interrupt moderation [15]
that attempts to classify incoming traffic. The interrupt throttling is then based on the
class determined, such that large amounts of packets will generate fewer interrupts
and if the class changes to small amounts of packets (or small packets), less modera-
tion will be placed on interrupt generation. This can be extended to include heuristics
that trigger based on throughput and packet sizes such that appropriate interrupts are
generated at the optimal time. Work by Hansen and Jul [16] ties the operating sys-
tem scheduler to the asynchronous data arrival to reduce the overall system-to-system
latency.

An additional approach in Data Center Ethernet (DCE) [17] is to tag particular
flows to differentiate as low latency flows. By having different virtual channels over
the same Ethernet interface, different channels can be applied with different interrupt
schemes. One option is simply to have certain TCP ports as being low latency and
interrupt upon receive traffic regardless of any interrupt moderation control. This can
be extended to complex TCP connection information to low latency flows.

As the network interface logic moves onto the die of the core processing TCP/IP,
interesting opportunities arise in how to notify the core of pending receive traffic. This
could be in the form of having complex monitor/mwait instructions or schemes to map
receiving data into a temporary cache in the coherent domain.

The head-of-queue example in NIC data buffer can also be addressed with DCE
which will formulate the order of transmit flows and potentially reorder based on
latency priority the order of the transmitted packets, bypassing the 20 µs mentioned
above. Head-of-queue latency impacts are also being addressed with receive-side scal-
ing (RSS) [18] which generates a hash table based on the n-tuple of the flow. This
can be the mapping of source IP address and port and destination IP address and port.
Based on this hash, different flows can be mapped to different available processors.
In this manner a single core, or ring of descriptors, does not become a bottleneck for
latency critical messages.

As the NIC moves onto the same die as the core, interesting methods to control the
right data being available to the right core such as direct cache access (DCA) [3] can
be explored.

The third latency variation discussed is bandwidth contention. The obvious method
to affect this is provide more system bandwidth such as bringing the NIC closer to
the core associated with processing TCP/IP traffic. Another method is to use DCA
based on knowledge of when the core will need the data, avoiding memory bandwidth
contention.

The proper alignment of cores to application and packet processing will also reduce
the latency. In supporting high throughput it may be appropriate to sequester a core
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for efficient packet processing. To ensure low latency, attaching the application core
to be the same core that processes the packets can reduce up to 8 µs in variation.

In short there are many aspects that are under development to make TCP/IP
system-to-system latency have much more determinism.

10 Conclusions

End-to-end latency between applications is emerging as an increasingly important
metric in data centers. Low latency may not only be a requirement for niche HPC
applications but also for much more common applications that are storage intensive
and when solid-state storage technologies are adopted.

In current available commercial and relatively inexpensive server systems that com-
municate via 1 Gb Ethernet we have measured a 12 µs latency to transmit a message
between two machines. This reduces to 10.2 µs in the 10 Gb environment. In our
experimental analysis, we have accounted for all of the significant contributors to this
latency. We have observed that much of this time is spent in the application/stack/driver
but there is also a significant component in hardware. Further substantial reduction
in latency would require simplification of existing driver to OS interface and also the
application to system software interface. Hardware latency can be reduced by integra-
tion of the network interface eliminating intermediate components such as chipsets.

One of the most significant issues with Ethernet latencies has been the variability.
However, it is practical to implement a set of methods to classify latency sensitive
packets and to prioritize them throughout the system is possible. Technologies such
as adaptive interrupt moderation, DCE, RSS, and NIC integration will significantly
bridge any remaining gap between TCP/IP based Ethernet communication latency and
other specialized solutions such as Infiniband and Myrinet.
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